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Conduction in a spatially varying magnetic field: 
one-dimensional strips, with zero mean field 

R B S Oakeshottt and A MacKinnon 
BlackeII Laiwralory. Imperial College, London SW7 ZBZ, UK 

Received 6 September 1993 

Abstract We calculate the density of staas and band conductivity of a two-dimensional electron 
gas with a periodically modulakd magnetic field. We consider the case of strips where the 
magnetic field is alternately going up and down with zero mean. We find characteristic features 
in the density of states and the conductivity ai low enemes as the elecmns are only able to 
drift parallel to the strips of magnetic field. As the energy is increased, and the electrons sm 
10 be able to drift perpendicular to the sMps there are pronounced band-srmchue effecb in the 
conductivity. 

1. Introduction 

The possibility of applying a spatially varying magnetic field to a two-dimensional electron 
gas (ZDEG) has been considered recently by several authors [l-51. Experiments with a 
magnetic field regularly modulated by sbips of magnetic material, or of superconductor are 
expected to be practical. In this paper we analyse the conduction for one particular case: 
a magnetic field modulated periodically in one direction, with zero mean field. Unlike 
previous work this constitutes a form of strong modulation, since the variation of the field 
is large compared with its average, although, depending on the parameters, the cyclotron 
energy associated with the magnetic field may be small compared with the Fermi energy. 

In section 2 we describe the Hamiltonian, and how, since the momentum parallel to 
the strips is conserved, the motion perpendicular to the strips is described by a simple one- 
dimensional Hamiltonian. In section 3 we discuss the classical motion of the electrons, and 
show how at low energies all the orbits drift parallel to the strips of the potential, whereas 
at higher energies the electrons can drift in any direction. In section 4 we present the 
results of a quantum mechanical calculation of the band conductivity. The perpendicular 
momentum dependent potential results in much stronger band effects being visible than for 
an electrostatic potential with the same effective potential for zero perpendicular momentum. 

2. Effective potential 

We consider a ZDEG with a magnetic field perpendicular to the sample of B = 
Bocos(;?nx/o). In practice there will also be components of the magnetic field parallel 
to the ZDEG. The system can be described by the Hamiltonian 
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where A = (aBo/2x)(O, sin(2rrx/a). 0). The Hamiltonian is banslationally invariant in the 
y direction, so that the momentum perpendicular to the modulation. p y ,  is conserved, and 
the motion in the x direction is described by the one-dimensional Hamiltonian 

R B S Oakeshott and A MacKinnon 

The effective potential seen by an electron is shown in figure 1 for different values of 
the perpendicular momentum p y .  By way of contrast, recall what happens for a system in 
a uniform magnetic field: A = Bo(0, y, 0)  and the effective potential is a parabola, the 
position of the parabola’s minimum depending on py. Here instead, with a zero mean field, 
the effective potential is periodic in x, and increasing the magnitude of py increases both 
the modulation and the mean value of the potential. 

Figure 1. Effective potenlid as a function of position X and perpendicular momentum p y .  
X is in units of the lanice periods. with lhe maximum of magnitude of the magnetic field at 
X = 0. 0.5 etc. p y  is in units of a&/2n and the potential is in units of the lhreshold energy. 
(i/Zm) (oeE0/2n)’, (a) Magnetic Hamiltonian, equation (2): (b) eiemoslatic Hamiltonian with 
same potential for pv  = 0. 

3. Classical motion 

Given the one-dimensional Hamiltonian in equation (2). the motion in the x direction is 
trivial: if the electron has a small momentum it oscillates in one of the minima; if it 
has a large enough momentum it travels with a steady mean velocity in the x direction. 
Figure 2 shows the possible motions for one particular origin. (Note that the dynamics 
are integrable because of the symmetry, and all the trajectories are periodic, modulo any 
uniform translation.) 

The potential implies that there is a threshold energy, 
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Figure 2. Paths of electron injzcted from a single 

below which there is no conduction perpendicular to the stripes, except by way of inelastic 
scattering, or scattering by impurities. Below this energy the only trajectories that exist are 
those where the electron drifts parallel to the stripes. 

We have calculated numerically the conductivity perpendicular and parallel to the strips 
assuming a scattering time of 38 ps. equivalent to a mobility of the unmodulated ZDEG 
of loom2 V-' s-'. We have calculated the diffusion constant from individual trajectories 
of duration 38 ps as 4, = (Ax2)/(2r), where Ax is the distance covered by the path 
in the x direction, and similarly for motion in the other direction. Doing this we neglect 
correlations between different paths, and any effect from the distribution of path lengths. 
Since o, >> I/T for the magnetic fields considered and the paths consist of straight lines 
with an oscillation superimposed we do not expect either of these simplifications to be 
significant. Since there is no net magnetic field in this problem there is no Hall resistance, 
Dxy = 0. For large magnetic fields such that the typical cyclotron radius of an electron is 
small compared with the lattice period there will be an enhancement to the conductivity 
parallel to the stripes because in this limit there are spatially separated regions where all 
the electrons drift in the same direction. 

Figures 3 and 4 show the calculated conductivity parallel and perpendicular to the strip. 
We see that the conductivity parallel to the strips is only weakly affected by the presence 
of the magnetic field modulation. The conductivity perpendicular to the strips is greatly 
reduced. The threshold energy for drifting trajectories is marked on the figures. Below this 
energy the conduction perpendicular to strips arises from the scattering conductivity due to 
the oscillation of the electron about its mean trajectory. 

4. Quantum mechanics 

We now tum to what we would expect quantum-mechanically. For a given perpendicular 
wavevector the electron sees a periodic potential, given by equation (2). with Fourier 
components at kx = k / a  and also because of the A2 term at kx = 4a/a. The size of 
the term at k, = &/a is seen to be proportional to k,. This term vanishes for k ,  = 0 so 
that the potential has half the periodicity at that point. 
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Flgure 3. Conductivity parallel Lo the ships for two different magnetic fields. "e solid line is 
the result of the quantum mechamical calcularion ofthe band conductivity, the dashed line is the 
result of classical calculation The doned lines mark the lhreshold energy lor drifting maion 
perpendicular to the strips For the two fields. 
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Figure 4. Conductivity perpendicular lo the ships for lwo different magnetic fields. The solid 
line is the result of h e  quantum mhaniwl calculation of the band conductivity. the dashed 
line is the result of the classical calculation. The conductivity has been smmthed by the Fermi 
function for T = 0.3 K to remove the spurious oscillations associated with the finite number of 
k p i n k  used For the calculation. The dotted lines mark the threshold energy for drifting motion 
perpendicular Lo the svips for the two fields. 

We have used the model and numerical techniques described in previous papers [6-81 
to calculate the band conductivity and the density of states in this system. We have used the 
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same parameters as for the classical calculation, with the addition of a quantum scattering 
time of 5Q = 6.5 ps for the density of states calculation. 

Figure 3 shows the band conductivity parallel to the strips. The quantum mechanical 
behaviour is similar to the classical behaviour. The small systematic deviation at large 
energies is a consequence of the finite discretization used the Hamiltonian for one unit cell 
was discretized on a 40 x 40 grid. For the weaker magnetic field shown the conductivity 
parallel to the strips shows little structure, except at the lowest energies. At the higher 
magnetic field we see more smcture, which is associated with onedimensional quantization. 
At low energies the electrons are confined to strips along the lines of zero magnetic field, 
and are only weakly coupled to adjacent strips by tunnelling. To a good approximation the 
electrons at low energy are therefore confined to a set of parallel, onedimensional strips, 
and the structure seen in the conductivity arises from the quantized modes in these strips. At 
higher energies conduction is possible perpendicular to the strips, and the onedimensional 
quantization disappears. 

The conductivity perpendicular to the strips, shown in figure 4 is more affected by 
the modulation than the conductivity parallel to the stripes, as we expect. In particular 
we see some characteristic sharp dips in the conductance at certain energies. These are 
band-structure effects. These effects are more prominant than for a comparable electrostatic 
modulation, as found for weak modulation by Peeters and Vasilopoulos [4], because the 
effective potential grows and rises with increasing k, rather than, just rising in energy as 
k, increases, smearing out bandstructure effects, as happens for an electrostatic modulation. 
Comparing figures 3 and 4 we note how the effects of the onedimensional quantization 
disappear as conduction perpendicular to the strips starts with increasing energy. We also 
see that in both cases the quantum mechanical and classical calculations give the same 
result, with the exception of some additional structure in the quantum case. 

Figure 5 shows the density of states. In the region where the conductance is showing 
effects from the onedimensional quantization, we see corresponding peaks in the density of 
states. At higher energies, where the electrons are free to drift perpendicular to the strips the 
structure in the density of states disappears. There is a double peak structure in the density 
of states, for example at approximately 0.45 T and 1.15 T. The lower peak is caused by 
electrons occupying the regions where the magnetic field is small. The upper peak arises 
as the electrons fill the regions of high magnetic field. 

5. Summary 

We have presented in this paper calculations for a novel, periodic, magnetically modulated 
system. Because the effective potential seen by the electron depends on its momentum 
perpendicular to the modulation, or more simply since the Lorentz force experienced by 
the electron increases with the velocity of the electron, band structure effects are more 
prominent than in a comparable electrostatically modulated system. 
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Figure 5. Density of states for a magnetic field of 80 = 1.47 T. The local density of stales at 
the two peaks indicated is shown in the insets. The darker areas indicate the higher density of 
s m s .  The regions of high magnetic field run verlically at the edge and cenm of the unit cell 
shown. 
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